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INTRODUCTION

BACKGROUND

* A lattice structure can be thought of as a structure consisting

of identical substructures coupled together in identical ways to form

a complete system. These substructures are typically formed by join-

*ing together bars or trusses in a relatively simple configuration.

Lattice structures are currently used to reduce weight, cost and

production time. Power line support towers, off-shore oil wells and

*crane booms are typical examples of lattice structures.

Because of their low weight, ease of transportation and ease of

assembly, lattice structures appear to be particularly well suited for

*outer space constructions. Research is presently being conducted to

assess the viability of these structures in the outer space environment

and to develop analytical models to describe their behavior. One

*approach involves replacing the lattice structure with an equivalent

continuum model.

SCOPE OF THE PRESENT WORK
0

As with any analysis, it is best to begin with a relatively simple

model of the actual structure, and then to increase the complexity of

the model as the need arises. The structures to be analyzed in this

report are relatively simple two-dimensional lattice structures.

Of particular importance in the absence of gravity are the dynamic

properties of the lattice structures. The vibration properties of the
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simplified two-dimensional lattices were first analyzed using the

NASTRAN finite element code. These finite element predictions were

then compared to experimental results obtained via an HP5451C Fourier

Analyzer and its Nodal Analysis software package.

Finite element procedures and programs are fairly well documented

and will not be discussed in this work. Experimental modal analysis,

however, is a relatively new analysis tool and will be explained in

detail to give the reader a general understanding of the experimental

procedures used and how the results can be interpreted.

0

0
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FINITE ELEMENT PREDICTIONS

LATTICE STRUCTURE GEOMETRY

* Figs. 1 and 2 show the two-dimensional lattice structures that

were analyzed and tested. The structures were each machined from one

piece of aluminum; that is, there were no welds or fasteners used in

* their construction. The structure shown in Fig. 1 will be referred

to as the 5-bay beam, and the structure in Fig. 2 will be called the

22-bay beam.

FINITE ELEMENT MODEL DESCRIPTION

The two structures were modeled and analyzed using the M.I.T.

Lincoln Laboratory version of COSMIC NASTRAN. Figs. 3 and 4 are

computer generated drawings of the finite element models that were

used to analyze the dynamic behavior of the 5 and 22-bay beams,

respectively. Both models were composed solely of grid points, or

nodes, connected together by BAR elements. (See [1] for an explana-

tion of the BAR element.) The solid lines of Figs. 3 and 4 represent

connections of BAR elements. Grid points are not shown in the figures.

* The 5-bay beam model was composed of 411 grid points and 416 BAR

elements. The 22-bay beam was modeled using 514 grid points connected

together by 536 BAR elements.

* The finite element models were constrained so as to simulate the

free-free boundary conditions that would exist in outer space. The

,~Numbers in square brackets denote references at the end of the report.
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structures were not allowed to deflect in the Z-direction, nor were

there allowed to be any rotations about the X-axis, thus preserving

the assumption of a 2-dimensional lattice. (See Figs. I and 2 for a

definition of the coordinate axes.) One percent structural element

damping was assumed for both models (1]. Note, the natural frequencies

and mode shapes did not change when the structural element damping was

set equal to zero.

RESULTS OF DYNAMIC ANALYSES

* Inverse power method [1] dynamic analyses of the finite element

models were performed to determine all of the natural frequencies and

mode shapes of the two models from 0 Hz to 20,000 Hz. In this fre-

• quency range, 172 natural frequencies and mode shapes were identified

for the 5-bay beam model, while 194 natural frequenices and mode shapes

were found for the 22-bay beam model. Some representative mode shapes

are given in Appendix A.

Computer times required for dynamic solutions of the two models

are also contained in Appendix A.

Fig. 5 is a plot of the first 35 natural frequencies of the 22-

bay beam model and the first 36 natural frequencies of the 5-bay

beam model.

0X
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EXPERIMENTAL MODAL ANALYSIS

INTRODUCTION

* A modal analysis involves the determination of the resonance

characteristics of a structure by defining its modes of vibration.

Each mode has a specific natural frequency and damping factor which

• can be identified at almost any point of the structure. In addition,

each mode is also associated with a mode shape which defines the mode

spatially over the entire structure. Once the dynamic properties of

* a structure have been identified, its behavior can be predicted (see

Appendix C). For a detailed explanation of modal analysis theory

see [2] through [12].

THE FREQUENCY RESPONSE FUNCTION

The basis for an effective experimental modal analysis lies in

the measurement of the frequency response function [2-6]. Consider-

ing the system of Fig. 6, the transfer function H(s) can be defined

as the Laplace transform of the system output y(t) divided by the

Laplace transform of the system input x(t). This can be written as

H(s) - Y(s) (1)X(s)

where Y(s) - Laplace transform of a system output, y(t)

X(s) - Laplace transform of system input, x(t)

s M Laplace variable (a complex number).

0
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The transfer function is complex valued having both a real and an

imaginary part.

Note that the Fourier transform gives the value of the transfer

function along the imaginary, or frequency axis. The transfer func-

tion evaluated along the frequency axis is often referred to as the

frequency response function. The frequency response function H(f),

can be written as

1(f) - (2)
X(f)

where Yf is the Fourier transform of y(t)

X(f) is the Fourier transform of x(t).

* The frequency response function H(f) is also a complex function and is

composed of real and imaginary parts.

FREQUENCY RESPONSE FUNCTION MEASUREMENT

The implementation of the digital Fast Fourier Transform (FFT)

on relatively low cost mini-computer systems has greatly facilitated

the identification of the frequency spectrum of a time varying signal.

These devices are called digital Fourier analyzers. Thus, a Fourier

analyzer which can simultaneously measure excitation (input) signals

and response (output) signals, digitize these signals, Fourier trans-

form them, and then divide the resulting Fourier transformed response

signal by the Fourier transformed excitation signal is an ideal tool

for measuring frequency response functions. Since the modes of vibra-

tion of a structure can be identified from frequency response functions

MOM



-20-

[2-10], a dual channel Fourier analyzer with additional processing

capabilities can be used to identify the dynamic, or modal properties

of a structure.0
An HP5451C Fourier analyzer was used to perform the experimental

modal analyses of the lattice structures of Figs. 1 and 2. This device

was capable of performing the tasks described in the previous paragraph.

However, the analyzer was also capable of obtaining better results by

computing the frequency response function as the ratio of the cross

power spectrum between the input and the output to the auto power
0

spectrum of the input [3-6, 11]

H(f) . Y(f) X(f)* Gyx(f) (3)
X(f) " X(f) X(f)* Gxx(f)

where X(f)* - complex conjugate of X(f)

Gyx(f) - cross power spectrum between the input

and the output = Y(f) X(f)*

Gxx(f) = auto power spectrum of input x(t) - X(f) X(f)*.

Eqn. (3) is particularly useful because it allows averaging of the

measurements. Averaging reduces the variance between single measure-

ments. Eqn. (3) can be written as [4]

H(f) - G(f)yx (4)
G(f)xx

where Gyx(f) ensemble average of cross power spectrum

Gxx(f) - ensemble average of input auto power spectrum.
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Eqn. (4) was used for measuring the frequency response functions of

the lattice structures.

THE IMPULSE EXCITATION TECHNIQUE

There are many techniques available for performing experimental

modal analyses, such as swept sine excitation, random excitation, per-

* iodic random excitation and transient excitation [4, 121. The impulse

excitation technique, a form of transient excitation, is often the

simplest and quickest method of obtaining reliable frequency response

* functions. The impulse excitation technique was used to perform the

experimental modal analyses of the lattice structures of Figs. 1 and

2. Reference [7] contains a detailed explanation of this excitation

method.

An important point to note is that frequency response functions

are valid only over the band of frequencies which are contained in the

input signal. Figs. 7 and 8 show the range of frequencies present in

the impacts used to excite the 5-bay beam at locations 1 and 2 respec-

tively. The structure was hit with the impact hammer (to be described

later) at the 2 locations in the Y-direction (see Fig. 1 for locations

and directions). The cutoff frequency (about 6 dB down from the ampli-

tude at 0Hz) for location 1 is about 1500Hz. Using the same cutoff

definition as above, impacts made at location 2 have a bandwidth ex-

tending from 0Hz to about 5000Hz. Reasons for the differences between

the curves in Figs. 7 and 8 will be explained later.
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0
EXPERIMENTAL MODAL ANALYSIS SETUP

Fig. 9 shows a schematic view of the test setup used to perform

the experimental modal analyses. The impact hammer was simply a ham-

mer with a PCB SN1377 force sensor (load cell) attached to its head.

The impact hammer was equipped with an aluminum tip. (The effects of

different tip materials are shown in Appendix C.) The load cell meas-

ured the force with which the structure was hit as a function of time,

and converted this excitation force to an equivalent electrical signal.

Figs. 10 and 11 show the excitation time histories obtained by

hitting the structure with the impact hammer in the Y-direction at

locations 1 and 2, respectively. Fig. 10 shows that multiple hits

occurred when the structure was impacted at location 1. Figure 11,

however, indicates that the hammer came in contact with the structure

only once during an impact at location 2. Note that Figs. 7 and 8 are

the Fourier transforms of Figs. 10 and 11, respectively, and that the

Fourier transform of the signal shown in Fig. 10 is much more erratic

than that of a single impact as shown in Fig. 11.

The excitation signal traveled from the hammer through an anti-

aliasing low pass filter. (See [13] for an explanation of the alias-

ing phenomenon.) The hammer impact signal then entered the Fourier

analyzer as the input (channel A) signal which was then digitized and

C processed.

The lattice structures were both suspended from the ceiling by

strings. The structures were oriented such that the Z-direction was

* parallel to the direction of gravity. This configuration closely

0M
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0
represented a 2-dimensional lattice structure in zero gravity.

The Endevco 2222B piezoelectric accelerometer attached to the

lattice structure measured the Y-direction response acceleration due
0

to impacts at any location on the structure. The response acceleration

signal was also passed through an anti-aliasing filter before it en-

tered the analyzer as the response (channel B) signal. The response

signal was then digitized and processed.

Figs. 12 and 13 are photographs of the laboratory setups that were

used in the experimental modal analyses of the 22-bay beam and 5-bay

beam respectively. Figs. 14 and 15 are close-ups of the response-accel-

erometers and the Fourier analyzer. Fig. 14 shows the 22-bay beam and

Fig. 15 shows the 5-bay beam.

EXPERIMENTAL PROCEDURE

The procedures described in references [2-4, 6, 11, 121 were used

in determining the dynamic characteristics of the two lattice struc-

tures. The response accelerometer was fixed at the locations shown in

Figs. 14 and 15 for all of the frequency response function measurements.

Different frequency response functions were obtained by impacting the

structures at different locations. Some representative frequency

response functions are shown in Appendix B.

In order to gain frequency resolution, many of the frequency

response functions were measured using band selectable Fourier analy-

sis (BSFA). Some frequency response functions made using BSFA are

also shown in Appendix B. For an explanation of BSFA see [3, 4].
S
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The Fourier analyzer then curve fit an analytical expression

to each frequency response function [2, 3, 71. The parameters of

these analytic expressions were then used to determine the natural

frequencies, damping ratios, residues and mode shapes of the structures.

Appendix C contains an explanation of these parameters, commonly called

modal parameters, and describes their significance.

An extension of the-results of the analyses in Appendix C led

to an attempt to predict the impulse responses of the two structures.

These impulse response investigations are explained in Appendix D.

RESULTS

Through the use of experimental modal analysis it was possible to

* identify natural frequencies, damping ratios, complex residues, and

mode shapes of the two lattice structures. The limited bandwidth of

the impact signals determined the number of mode shapes that could

• accurately be identified. Thirty-four mode shapes and natural fre-

quencies were identified for the 5-bay lattice structure, and the first

18 mode shapes and natural frequencies were found for the 22-bay lattice

* structure. It was, however, possible to identify the frequencies corre-

sponding to the next 12 natural modes of vibration of the 22-bay beam.

Thus, the first 30 natural frequencies of the 22-bay beam were identi-

fied.

Fig. 16 is a plot of frequency versus the mode number for the

two lattice structures.

N.
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The results of the impulse response of the lattice structures

(Appendix D) revealed that location 2 of the 5-bay beam was the only

suitable excitation location available for this investigation. It was

found that impact hammer impulses at this location did not sufficiently

excite the higher natural frequency modes of vibration of the 5-bay

structure. Thus, it was not possible to use modal parameters to

predict the response acceleration at the response location due to an

impulse at location 2 of the 5-bay beam.

S
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COMPARISON OF RESULTS

Fig. 17 shows the frequencies versus mode numbers for the 5-bay

* beam as predicted by NASTRAN and as measured using experimental modal

analysis and the Fourier analyzer. The analyzer was able to identify

34 of the first 36 natural modes of vibration that were predicted by

*NASTRAN. A comparison of mode shapes revealed that the experimental

modal analyses failed to identify the 6th and 13th modes that were

predicted by NASTRAN. The close correlation between the finite ele-

ment-predicted natural frequencies and mode shapes, and the experi-

mental modal analysis-measured natural frequencies and mode shapes

suggests that the 6th and 13th mode shapes that were found using

NASTRAN did indeed exist, however, their mode shape amplitudes may

have been too small for the response accelerometer to measure.

Fig. 17 shows that for each mode, the NASTRAN-predicted natural

frequencies were lower than the experimental modal analysis-measured

natural frequencies. Note that the linear interpolations used in

Fig. 17 cause the NASTRAN curve to lie above the HP FOURIER ANALYZER

curve at the missing Fourier analyzer mode numbers 6 and 13.

There is a region in Fig. 17 where the difference in frequency

between successive natural modes of vibration is much larger compared

to the average frequency difference between consecutive modes. This

region is the steepest sloped section of the two curves and appears to

be a transition region between modes whose shapes are such that the

sides of the bays deform in at most a shape similar to a half sine

0
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wave, as in Fig. 18, and modes with shapes that have at least full

sine wave shaped deformations on the sides of each bay as in Fig. 19.

Figs. 18 and 19 show the 21st and 22nd mode shapes of the 5-bay beam,

respectively.

Fig. 20 is a plot of the frequencies versus mode numbers for the

22-bay beam as predicted by NASTRAN and as measured using experimental

modal analyses. The 18 mode shapes that were found using experimental

modal analyses were the same as the first 18 mode shapes predicted by

NASTRAN. The similarity of shapes of the two curves of Fig. 20

indicate that the first 30 modes of vibration predicted by NASTRAN

would have been identified by experimental modal analysis if the

analyzer had been capable of accurately recording mode shapes at these

higher frequencies.

The steep sloped segments of the two curves of Fig. 20 indicate

a transition similar to that observed for the 5-bay beam in Fig. 17.

* For the 22-bay beam this region roughly defines a boundary between

modes of vibration whose mode shapes represent a somewhat sinusoidal,

or wave-like deflection of the entire structure as in Fig. 21, and

modes whose shapes appear to behave much more independently in each of

the bays as in Fig. 22. Fig. 21 shows the mode shape of mode 23, and

Fig. 22 shows the mode shape of mode 25. Note, Figs. 21 and 22 show

the deformed mode shape superimposed over the undeformed shape of the

22-bay beam finite element model (see Fig. 4). Also, as with the

5-bay beam, NASTRAN-predicted natural frequencies were lower than

those measured using the Fourier analyzer.
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For both structures the differences between NASTRAN-predicted

natural frequencies and experimental modal analyses-measured natural

frequencies increase with the mode numbers. These errors were larger

for the 22-bay beam lattice structure than for the 5-bay beam lattice

structure.

Appendix D contains a comparison between the modal parameter-

predicted impulse response and the measured impulse response of the

5-bay lattice structure.
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CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

Finite element dynamic analyses and experimental modal analyses

were performed on two relatively simple two-dimensional lattice struc-

tures. The following conclusions can be drawn based on the results and

comparisons of this work.

(1) Over a limited frequency range, the NASTRAN-predicted mode

shapes of both structures correlate well with the mode

shapes measured using a Fourier analyzer and the modal

analysis software package.

(2) The first 30 NASTRAN-predicted natural frequencies of both

beams are slightly lower than those measured using the

Fourier analyzer. The NASTRAN and experimental model

analyses results agree to within 7% for the 22-bay beam

and to within 5% for the 5-bay beam.

(3) The errors between natural frequencies predicted by NASTRAN

and natural frequencies measured by the Fourier analyzer

increase as the mode numbers increase.

(4) The major cause for errors in the NASTRAN solutions probably

arise from modeling a continuous structure as an assemblage

of finite elements. The largest cause of these inaccuracies

in the finite element models occurs at the intersections of

adjacent substructures such as at location 2 of the 5-bay

beam. The additional stiffness provided by the radius of

curvatures at these intersections was not included in the

0!
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finite element models. Thus, the finite element models

underestimated the stiffness of the actual lattices.

(5) The NASTRAN-predicted natural frequencies of the 5-bay

structure are closer to those measured experimentally using

the Fourier analyzer probably because the 5-bay structure

had fewer substructure intersections. In other words, the

finite element model of the 5-bay beam seems to be more

accurate than the finite element model of the 22-bay beam.

(6) Experimental modal analyses are not exact because information

contained in the continuous signals is lost when these signals

are sampled at discrete intervals. Resolution can be im-

proved by using band selectable Fourier analysis (BSFA).

(7) Natural frequencies measured using experimental modal

analyses are probably slightly higher than what they should

be because the lattice structures were not totally

unconstrained.

(8) The experimental modal analyses are limited by the frequency

content of the input signal. Accurate mode shapes can only

be obtained for natural modes of vibration falling within the

bandwidth of the input signal. Also, there is very little

user control over excitation frequencies when the impact

excitation technique is used.

(9) It is possible to use the modal parameters to predict the

impulse response of multiple degree of freedom systems.

However, this technique is not accurate when the dominant
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modes of vibration of a structure lie outside the frequency

range of the impact signal. This is the case for the 5-bay

beam. (The 22-bay beam is not suitable for impulse response

0 testing.)

(10) The two lattice structures have a transition frequency region

below which the mode shapes have roughly similar mode shape

0 characteristics. Mode shapes corresponding to natural fre-

quencies above this region also have characteristics that

differentiate them from those below the transition region.

e
RECOMMENDATIONS

The following suggestions for further investigation should alleviate

some of the problems, and confirm some of the results mentioned above.

(1) The NASTRAN finite element models should be modified to more

accurately represent the two lattice structures. The major

modification should involve an attempt to model the inter-

sections of the sides of 2 bays with the cross member that

separates them, that is, the regions similar to location 2

of the 5-bay beam. In this work, all NASTRAN bar elements

had identical cross-sectional properties, and the radius

of curvature at 90 degree intersections was neglected.

Including the effects of this radius in a finite element
C

model might give a more accurate prediction of the actual

behavior of the lattice structures.

(2) Modal analyses should be performed using a random noise

excitation. This would give the user much more control
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over the frequency content of the input excitation. The

modal analyses would be limited by the characteristics of

the random noise generator and the electro-mechanical

* transducer.

(3) A heavier, but not stronger, lattice structure should be

constructed and tested. A heavier structure would have

* lower natural frequencies, therefore it might be possible

to more accurately predict the impulse response of the

structure. Also, it might be possible to measure more mode

* shapes of the heavier structure because more natural fre-

quencies might fall in the frequency range of the input

excitation signal.

• (4) Finally, a three-dimensional lattice structure should be

analyzed via the finite element method. The predictions

should be compared to the results of experimental modal

* analyses to determine the degree of correlation between the

two methods of analyses.
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Fig. 4 Finite element model of 22-bay beam.
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Fig. 12 Photograph of the laboratory setup used for
modal analyses of the 22-bay beam.
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SFig. 13 Photograph of the laboratory setup used for

modal analyses of the 5-bay beam.
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Fig. 14 Photograph of 22-bay beam experimental modal analysis
setup showing response accelerometer, impact hammer
and Fourier analyzer.
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Fig. 15 Photograph of 5-bay beam experimental modal analysis
setup showing response accelerometer, impact hammer
and Fourier analyzer.
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mental modal analyses.
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APPENDIX A

MODE SHAPES AND SOLUTION TIMES FOR FINITE
ELEMENT DYNAMIC ANALYSES

5-Bay Beam

Figs. Al through A19 show some of the mode shapes of the 5-bay

beam that were found using NASTRAN. These 19 mode shapes are repre-

sentative of some of the 172 total configurations that were identified

in the NASTRAN analyses of the 5-bay beam. Figs. Al through A8 show

the mode shapes superimposed over the undeformed finite element model.

Figs. A9 through A19 show only the deformed mode shapes.

The inverse power method [i] was used to determine the natural

frequencies and mode shapes. The solution time (cpu-sec) was in-

dependent of the frequency range in which the natural frequencies and

mode shapes were to be calculated. In other words, it took approxi-

mately the same amount of time for the computer to determine a natural

S frequency and associate mode shape near 20 kHz as it took to find the

lowest natural frequency and associated mode shape (approximately

95 Hz). The computer required approximately 11.25 cpu-sec to determine

* each natural frequency/mode shape pair.

Note, the mode shapes were normalized to the mass matrix.

22-Bay Beam

Figs. A20 through A35 show some of the mode shapes of the 22-bay

lattice structure that were found using NASTRAN. These 16 mode shapes

were selected from the 194 total mode shapes because they represent
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the variety of mode shape configurations of the 22-bay beam. Figs. A20

through A24 and figs. A27 through A31 show the mode shapes super-

imposed over the undeformed finite element model. The remaining figures

show only the deformed modes of vibration.

As with the calculations of the natural frequencies and mode

shapes of the 5-bay beam, the inverse power method solution times

were independent of the magnitude of the natural frequencies being

calculated. The solution of each natural frequency/mode shape pair

for the 22-bay beam required about 13.95 cpu-sec.

Note, the mode shapes of the 22-bay beam were also normalized to

the mass matrix.
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Fig. A7 Mode 18 (frequency =519.73 Hz).
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Fig. A9 Mode 22 (frequency =944.95 Hz).
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Fig. A10 Mode 26 (frequency = 1136.55 Hz).
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Fig. All Mode 36 (frequency -- 1400.10 Hz).



-70-

Fig. A12 Mode 37 (frequency =1635.81 Hz).
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Fig. A16 Mode 82 (frequency =6317.29 Hz).
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Fig. A27 Mode 23 (frequency = 1544.77 Hz).
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Fig. A28 Mode 26 (frequency =2215.13 Hz).
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Fig. A29 Mode 40 (frequency =3106.11 Hz).
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Fig. A30 Mode 44 (frequency =3304.94 Hz).
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Fig. A31 Mode 52 (frequency =3594.39 Hz).
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Fig. A32 Mode 57 (frequency =4437.96 Hz).
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Fig. A36 Mode 109 (frequency 8954.04 Hz).
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APPENDIX B

REPRESENTATIVE FREQUENCY RESPONSE FUNCTIONS OF THE 5-BAY BEAM

* Figs. Bi and B2 show the real and imaginary parts of a typical

transfer function of the 5-bay beam. This transfer function was ob-

tained by exciting the structure near the response accelerometer

* using the impact hammer. The load cell attached to the hammer's head

recorded the input to the structure in units of N(lb). The response to

the impacts was measured by an accelerometer fixed to the structure at

* the response location. The response was measured in units of g

(ig = 9.8 N/sec2 (386.4 in/sec 2)). Thus the vertical scale of the

transfer function is given in units of output/input or g/N (g/lb).

The frequency response function of Figs. Bl and B2 contains fre-

quencies from 0Hz to 500Hz. Frequency response functions whose lowest

frequency is 0Hz are called "base band" frequency response functions.

The spikes in Figs. Bl and B2 indicate natural frequencies. Figs. B3

and B4 show the real and imaginary parts, respectively, of a frequency

response function obtained by impacting the 5-bay structure at location

1 and measuring the response at the fixed response location. The fre-

quency range (bandwidth) of Figs. B3 and B4 extends from 450Hz to

1000Hz. This frequency response was obtained using band selectable

Fourier analysis (BSFA). In order to obtain better resolution, all

frequency response functions above 500Hz were obtained using BSFA.

Notice, in Figs. B3 and B4, the small group of spikes near 550Hz.

From Figs. B3 and B4 it was impossible to determine exactly the number

0MM W L14Z4W49M
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of spikes in this group. Fig. B5 shows an expanded view of Fig. B3

obtained using BSFA. Fig. B5 shows frequencies ranging from 500Hz to

600Hz. From the frequency response function of Fig. B5, the Fourier

analyzer was able to identify four distinct spikes in the region near

550Hz.

BSFA proved to be an _nvaluable tool for measuring frequency

response functions at higher frequencies.
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location 1.
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APPENDIX C

SIGNIFICANCE OF MODAL PARAMETERS

Introduction

The following is an explanation-of the theoretical and physical

significance of the modal parameters (natural frequencies, damping,

and complex residues) that constitute the numerical output of an ex-

perimental modal analysis.

Analytic Description of a Single Degree of Freedom System

The single degree of freedom (SDOF) system shown in Fig. Cl can

be represented mathematically by the equation

mi(t) + ci(t) + kx(t) - f(t) (Cl)

where

M * mass in kg (lb-s 2/in)

c - damping coefficient in N-s/m (lb-s/in)

k = spring stiffness in N/m (lb/in)

x(t) = time history displacement in m (in)

*(t) = time history velocity in m/s (in/sec)

i(t) = time history acceleration in m/sec
2 (in/sec )

f(t) = time history force applied to mass in N (lb)

Eqn. (Cl) can be written in the Laplace domain as [12]

R R*

H(s) - +R* (C2)H~s) s-p s-p*
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where

H(s) - complex frequency response

R a complex residue

p - complex pole - -a + iw

The asterisks in eqn. (C2) denote complex conjugates. The complex

pole (p) can best be visualized in the s plane as in Fig. C2. The

system pole determines the natural frequency w(rad/sec) and the damp-

ing ratio a(rad/sec). The complex residue (R) contains all the magni-

tude and phase information necessary for describing the system's mode

shape [14].

The inverse Laplace transform of the system transfer function,

eqn. (C2) gives [4]

h(t) - IRIe- a t sin(wt + a) (C3)

where

h(t) - impulse time history response

IRI M magnitude of complex residue

a M phase angle of complex residue

a - damping ratio

W M natural frequency

Thus the four parameters ( R , a, a, w) which constitute the numerical

output of the experimental modal analysis are sufficient to completely

r
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describe the dynamic behavior of the SDOF system, both in the Laplace

domain and in the time domain. See [14] for an analytic derivation

of the complex residues.

Mass-Spring System Investigation

The following investigation was carried out to verify that the

* parameters generated by the Fourier analyzer could be used in eqn. (C3)

to predict the impulse response of a SDOF system.

Experimental Setup -

Fig. C3 shows the experimental setup used in this investigation.

The hammer was equipped with a PCB SN1377 force sensor attached to its

head. The force sensor measured the force applied to the mass. An

Endevco 2222B piezoelectric accelerometer was fixed to the mass and

recorded the response acceleration of the mass. Damping in the system

was provided by the damping in the spring. Thus, the mass-spring sys-

tem of Fig. C3 was idealized to a mass-spring-damper SDOF system such

as that shown schematically in Fig. Cl.

Calculation of Impulse Response of Mass-Spring System -

The spring stiffness, k, was measured using a tensile test machine.

The average spring stiffness (between tension and compression) was

about 4027.89N/m(23 lb/in). The mass weighed 0.4463 kg(0.002548 lb-s 2
€2
in). The weight of the spring, 0.0181 kg (0.0001 lb-s 2/in), was

neglected in all calculations. The damping of the spring was calcu-

lated using [15]
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C = 2 ma (C4)

M 0.3838 N-s/m(.0022 lb-s/in)

• where the value of a (.43 rad/s) was taken from the output of modal

analysis (to be described later).

The response of the mass was measured as an acceleration, thus

* eqn. (C3) will give the acceleration impulse response h(t). The ana-

lytic expression for the impulse response of a single degree of free-

dom system is given as [15]

h(t) - 1 e sin Wdt (C5)
MW d d

• where

m = mass - 0.4463 kg

W n natural frequency = km• n

= 95.05 rad/s

= damping ratio - c/2mwn

= .00011

w d = damped natural frequency

n2n El

G The impulse response acceleration was obtained by taking the second

time derivative of eqn. (C5) which gave

h(t) - e W n t[(2 W n - Wd) sin (wdt) - 2 Cwn cos (wdr 0 (C6)

*d d1
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0

Note that the units of h(t) are m/N-s3 (in/lb-s 3). Substituting the

appropriate values into eqn. (C6) gives

h(t) = e-'Olt(-21.72 sin 95(t) - .0091 cos 95(t)) (C7)

2where a factor of 1/9.8 m/sec has been introduced into eqn. (C7) to

* obtain acceleration in units of g's, where ig = 9.8 m/sec2 (386.4

in/sec 2). Eqn. (C7) actually gives the impulse response acceleration

due to a unit impulse. The units of impulse are N-sec (lb-sec). Thus,

the units of eqn. (C7) are g/N-sec (g/lb-sec). Fig. C4 shows a plot

of eqn. (C7) from t - 0.0 to t - 1.0 seconds.

Calculation of Impulse Response Using Modal Analysis Parameters --

An experimental modal analysis was then performed on the mass

spring system. The real part of the resultant frequency response

function of this system is shown in Fig. C5.

0 As shown in Fig. C3, the mass was free to move in any direction,

not just vertically. The largest spike (- 16 Hz) of Fig. C5 corresponds

to the natural mode of vibration of the mass moving vertically - ideally

* the only mode of the single degree of freedom system. The mass, when

hit with the hammer, would not only move vertically, but would also

sway laterally. The small spike (- 20 Hz) corresponds to the non-

* vertical motion of the mass.

The Fourier analyzer then fit an equation of the form of eqn. (C2)

to the measured data. (See (3, 7] for an explanation of the curve

* fitting techniques used by the analyzer.) The modal parameters
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(complex poles and residues) that were output from the analyzer were

the parameters that corresponded to the curve fit frequency response

function data. The data in Table Cl corresponded to the first spike

of the frequency response function of Fig. C5 (vertical motion of the

mass). (As will be shown later, the Fourier analyzer's curve fit data

also included the effects of lateral mass motion, but these contribu-

tions are neglected here.) The value of a in Table Cl was used in

obtaining a value for the damping in the spring (eqn. (C4)).

Fig. C6 shows a plot of eqn. (C3) evaluated using the parameters

of Table Cl. Note that because the response was measured as an accel-

eration, eqn. (C3) actually gives the impulse response acceleration per

unit impulse not the impulse response displacement per unit impulse.

A comparison of Figs. C4 and C6 shows the similarity between the

analytical prediction of the impulse response acceleration and the

modal analysis parameter prediction of the impulse response. The

natural frequency w n predicted analytically was about 95 rad/sec

while that measured using the Fourier analyzer and modal analysis was

100.5 rad/sec. The maximum acceleration per unit impulse predicted

analytically was about -22g/N-sec (-95g/ib-sec) and that predicted

using eqn. (C3) and the measured modal parameters was approximately

-20g/N-sec (-9g/Ilb-sec). The phase angles between Figs. C4 and C6

appear to be quite close. Note, the response accelerometer was

oriented so that upward acceleration of the mass was a positive

acceleration. The above negative values indicate that the peak
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response acceleration per unit impulse of the mass-spring system

corresponds to a downward acceleration of the mass.

Conclusions --

Thus the use of the experimentally determined modal parameters

along with eqn. (C3) seemed to be an effective way of predicting the

impulse response acceleration of a SDOF system. This technique is

particularly well suited for systems who's spring constant, damping

factor and mass may be difficult to measure.

Analysis of the Mass-Spring System as a Two Degree of Freedom System

Introduction -

It is evident from the frequency response function of Fig. C5

that the mass-spring system used in this investigation was not a true

single degree of freedom system. The second smaller spike of Fig. C5

0 indicates that the impulse response acceleration should have been

similar to that of a two degree of freedom (2DOF) system. The

Fourier analyzer was capable of identifying many modes of vibration

* of a structure and could fit a multiple degree of freedom system

equation of the form [4]

n R k*
H(s) = s- - (C8)

k=l 5 kk

to a measured frequency response function with n natural frequen-

cies (spikes). The pk and Rk of eqn. (C8) were the complex poles and
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residues, respectively, that corresponded to the k natural mode of

vibration.

Modal Analysis Results --

The Fourier analyzer identified two modes of vibration in the

frequency response function of Fig. C5 and fit a 2DOF system equation

of the form of eqn. (C8) (with n - 2) to this frequency response func-

tion. The 2DOF modal analysis resulted in the modal parameters shown

in Table C2.

Modal Parameter Prediction of 2DOF System Impulse Response --

The two sets of modal parameters in Table C2 were substituted

into the following equation (4]

2
2~' -a t

h(t) E e k sin(wkt + ak ) (C9)
k-l

which is the inverse Laplace transform if eqn. (C8). Eqn. (C9) includes

the contributions of the two modes of vibration of the impulse response

acceleration. Fig. C7 shows the results of substituting the parameters
0

of Table C2 into eqn. (C9).

Experimental Verificaton of 2DOF System Impulse Response --

An actual time history impulse response acceleration was measured

by hitting the mass with the impact hammer and then recording the re-

sponse accelerometer signal. This recorded response signal is shown

in Fig. C8.

xit
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Comparison of Results --

A comparison of Figs. C7 and C8 reveals that the shapes of the

two curves are nearly identical, the vertical scale being the only

major difference.

The time history acceleration impulse response curve predicted

using the modal parameters had the units of the residues, or g/N-sec,

while the response accelerometer signal (Fig. C8) had units of g's

(where 10 mV - lg). The vertical scales of Figs. C7 and C8 differ by

the units N-sec, which were the units corresponding to the area under

the impulse excitation curve. Thus, multiplying the modal parameter

generated impulse response acceleration curve (Fig. C7) by the area

under an arbitrary impulse curve should give the actual impulse re-

sponse acceleration due to the particular impulse.

Validity of Using Modal Parameters to Predict Peak Impulse

Response Acceleration

The validity of using Fig. C7 to predict the impulse response

acceleration of the mass due to any impact is examined in the follow-

ing investigation.

Experimental Procedure and Results --

The previously described mass spring system was excited using

the impact hammer equipped with tips made of different materials. A

rubber-tipped hammer caused the pulse shown in Fig. C9. The area under

this pulse had units of N-sec and determined the amount of momentum

1.I & V = ~;
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imparted to the mass, and hence determined the magnitude of the im-

pulse response acceleration. Fig. Cl0 shows the peak acceleration

response of the mass due to the impulse of Fig. C9. Figs. Cli and C12

show the impulse and acceleration response of the mass, respectively,

obtained using a plastic-tipped hammer. Figs. C13 and C14 show the

corresponding results obtained using an aluminum-tipped hammer. The

peak accelerations of Figs. C10, C12 and C14 are given in Table C3.

Modal Analysis-Predicted Results -

* Fig. C7 shows that the peak impulse response acceleration per

unit impulse of the mass is about -24 g/N-s (111 g/lb-s, where 1 lb -

4.4482N). So the maximum acceleration of the mass due to an arbitrary

* impulse should have been equal to

= -24 g/N-s x A N-s (Clo)

• where A was the area under the arbitrary impulse curve.

The area under the impulse in Fig. C9 was approximately

7.71 x 10-2 N-s, so the peak acceleration of the mass, according to

* eqn. (ClO) should have been

-24 g/N-s x 7.7 x 10- 4 N-s - -1.85 g

The predicted peak response accelerations due to the other two im-

pulses (plastic-tipped and aluminum-tipped hammers) were calculated

in a similar fashion and are summarized in Table C3.
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Comparison of Results --

An examination of the results of Table C3 indicates that the modal

parameters can indeed be used to predict the response acceleration of

the mass due to an arbitrary impulse.

Conclusions

* As shown above, the usefulness of a modal analysis extends beyond

the frequency domain, where natural frequencies and mode shapes are

obtained, and into the time domain where the modal parameters can be

• used to predict impulse response behavior. In addition, the impulse

response acceleration curves predicted using the modal parameters could

easily be integrated to give impulse response velocity or displacement

* time histories.

0
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TABLE Cl Modal Parameters Associated With
the First Spike of Figure C5

wa R

100.5 rad/sec 0.43 rad/sec 20.4622 g/N-sec 2.6 rad
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TABLE C2 Modal Parameters Associated With the 2DOF
Frequency Response Function of Figure C5

Mode w (rad/sec) a (rad/sec) IR (/Nsec) a (rad)

1 100.5 0.43 20.46 2.6

2 125.2 0.71 5.5348 3.03

0P

011
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TABLE C3 Measured and Predicted Peak Impulse
Response Accelerations Caused By
Hamer Impacts Using Different Tip
Materials

* Measured Peak Predicted Peak
Tip Material Acceleration Response (g) Acceleration Response (g)

Rubber -2.0 -1.9

Plastic -1.2 -1.0

Aluminum -1.3 -1.2

0
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t f~t

Fig. C1 Schematic representation of a single degree
of freedom system.

0
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Fig. C2 S-plane representation of a complex pole.
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Fig. C5 Real part of the frequency response
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Fig. Cl0 Response acceleration of the mass due to
rubber-tipped hammer impulse of Fig. C9.



-126-

.10 m~'V 4.4482 (1 LB)

.6-

6 1i9 26 36 46 56 686 AN6 86 6 16
16-6 SEC
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Fig. C12 Response acceleration of the mass due to the
plastic-tipped hammer impulse of Fig. Cll.
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APPENDIX D

IMPULSE RESPONSE OF LATTICE STRUCTURES

Introduction

The following investigation was performed in an attempt to use

model parameters to predict the impulse response characteristics of

the two-dimensional lattice structures.

Experimental Procedure

The only location on either of the two structures where a clean

impulse (single spike) could be imparted was at location 2 of the 5-

bay beam structure. Only responses due to impluses at location 2 were

predicted because responses due to impulses at other locations could

not be generated experimentally, hence there would be nothing with

which to compare the predicted results. The 5-bay structure was

impacted in the negative Y-direction using a hammer with an aluminum-

tipped PCB SN1377 load cell attached to its head. The Y-direction

response acceleration was measured at the fixed output location via

an Endevco 2222B piezoelectric accelerometer.

Results of Modal Analysis

Fig. Dl is the real part of the frequency response function that

was obtained by exciting the structure at location 2 via the impact

hammer and measuring its response acceleration at the fixed output

location. Fig. Dl indicates that the most prominent natural modes of

vibration of the 5-bay structure occurred in the regions near 9 kHz and

20 kHz. These natural frequencies had the greatest influence on the
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response of the 5-bay beam due to an impact at location 2.

The Fourier analyzer then fit an analytical expression for the

frequency response function of the form

n* * k
• n *

H(s) - R k (DI)
k i sPk p

* to the frequency response curve of Fig. Dl. Rk of eqn. (DI) corresponds

to the complex residue at the rimplex pole, Pk" The superscript

asterisks indicate complex conjugates. The n of eqn. (Dl) corresponds

* to the number of natural frequencies, or spikes, in the frequency

response function.

The Fourier analyzer indentified n = 17 natural frequencies in

the frequency response function of Fig. Dl and generated the four modal

parameters (natural frequency (w), damping ratio (a), residue amplitude

(IRI), and residue phase (a)) for each mode. Table Dl contains the

17 sets of modal parameters generated by the Fourier analyzer.

Modal Parameter-Predicted Impulse Response

The inverse Fourier transform of the analytical expression of the

* frequency response function (eqn. (Dl)) gives

n
-kt

h(t) = E R k e sin(wkt + ak) (D2)

which is the time history response due to an impulse. Eqn. (D2) has

the same units as the residue magnitude which are g/N-sec (g/lb-sec).

Thus, eqn. (D2) gives the response acceleration per unit impulse. The

- modal parameters in Table Dl were substituted into eqn. (D2) and the
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results are plotted in Fig. D2. Fig. D2 predicts the time history

response acceleration per unit impulse due to an arbitrary impulse at

location 2.

The maximum value of the curve in Fig. D2 is approximately 76,000

g/N-sec (338,000 g/lb-sec). The equation

* x(t)max  = 76,000 g/N-sec x A (D3)

predicts the peak response acceleration due to an impulse at location 2.

The variable A in eqn. (D3) corresponds to the value of the impulse

(area under the impulse curve) and has units N-sec (ib-sec).

Evaluation of Results

The following investigation was performed to determine the validity

of using eqn. (D3) to predict the peak response acceleration of the

5-bay beam due to an impact at location 2. Fig. D3 shows an impulse

curve that was obtained by impacting the 5-bay structure ac location

2. Fig. D4 shows the measured response acceleration of the 5-bay

lattice structure due to the impulse of Fig. D3.

At first glance, the similarity of shapes between the curves in

Figs. D2 and D3 seemed to indicate that the modal parameters were able

to predict impulse response acceleration. Further investigation,

however, revealed that this was not the case.

The area under the impulse of Fig. D3 is about 5.17 x 10-4 N-sec

(.0023 lb-sec). Therefore, according to eqn. (D3), the maximum

response acceleration should have been 782 g. The actual peak
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response acceleration of Fig. D4 was approximately 150 g, Clearly,

the modal parameters did not accurately predict the impulse response

acceleration of the 5-bay lattice structure.

Conclusions

The discrepancies between the modal parameter-predicted peak

* response acceleration and the measured peak response acceleration

probably arose from the limited range of frequencies present in the

impulse signals used to generate the frequency response curve of

Fig. Dl. The 6 dB down cut-off frequency for an impact at location 2

was about 5,000 Hz. There were frequencies above 5,000 Hz present in

the impulse signal, however, their amplitudes may have been insuffi-

cient to adequately excite these frequencies in the structure. The

result was spurrious frequency responses above 5,000 Hz. Thus, the

frequency response function information above 5,000 Hz should be

ignored, and the impulse response of the 5-bay structure cannot be

predicted using modal parameters.

Another cause of errors could have been the poor frequency

resolution that was required in order to measure frequencies as high

as 25 kHz. Using 2048 sampling points resulted in a frequency

resolution of about 50 Hz [5]. Thus a great deal of information may

have been lost due to the sampling limitations of the analyzer.

0
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TABLE Dl Modal Parameters Corresponding to the
Frequency Response of Figure D1

0k R (gIN-sec) a (rad/sec) w~ (rad/sec) a (rad)

1 8544.8008 36.3000 49291.6016 4.4800

2 9793.1992 42.4000 50469.0000 4.2400

*3 2547.1001 22.7000 51326.1016 1.8800

4 8904.6992 49.5000 51788.5000 1.0600

5 6896.3984 25.3000 53060.1992 1.4000

6 4332.8984 28.5000 54539.3008 4.4600

*7 13654.6992 39.7000 57666.3984 4.0100

8 4703.6016 64.5000 59110.8984 4.3000

9 22303.8008 83.8000 60959.5000 0.7000

10 10545.5000 111.0000 62987.6992 0.6000

*11 8339.6016 104.6000 65141.6016 3.3500

12 6658.5000 106.2000 67162.1875 3.7000

13 3938.2000 33.1000 108503.687 2.7800

14 3347.2000 56.1000 111983.312 5.4000

*15 6723.3984 45.1000 114007.812 5.6000

16 4158.6016 42.0000 119957.312 2.2700

17 7414.6016 68.0000 124649.625 5.1400

G6
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Fig. Dl Real part of the frequency response functions
obtained by impacting the 5-bay lattice at
location 2.
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